Appendices

Appendix A: Acronyms

BOR Bureau of Reclamation CAP Conservation Action Plan

CDSS StateMod Colorado Decision Support System Stream Simulation Model

CDWR Colorado Division of Water Resources

cfs Cubic feet per second

Collaborative Roaring Fork Watershed Collaborative Water Group

Conservancy Roaring Fork Conservancy

CWCB Colorado Water Conservation Board

CWT Colorado Water Trust

HB 1177 Colorado Water for the 21st Century Act
IHA Indicators of Hydrologic Alteration
ISF CWCB's Instream Flow Program
NHD National Hydrography Data

NRCS National Resource Conservation Service
River District Colorado River Water Conservation District

SHI Stream Health Initiative

SWSI Statewide Water Supply Initiative

TNC The Nature Conservancy

Twin Lakes Co
USEPA
Twin Lakes Reservoir and Canal Company
U.S. Environmental Protection Agency

USFS U.S. Forest Service USGS U.S. Geological Survey

Appendix B: Options for Flow Protection or Restoration

Chrissy Sloan, 2004 Roaring Fork Conservancy Research Fellow and Sharon Clarke, Water Resource Specialist

The Roaring Fork Conservancy has identified several potential flow protection or restoration options to improve stream flows. These include: drafting emergency loan agreements to be used in dry months; obtaining senior water rights to be left instream; buying unused contract water; altering dam operations; identifying detrimental land use practices and pursuing options through land use planning and education to minimize or mitigate their harmful effects; and education and outreach to schools, public, planners, and elected officials about the relationship between water quantity and timing and ecological function. As a mechanism to prioritize and implement these options the Conservancy is committed to working with the Collaborative on developing a watershed plan that will address water quantity issues holistically and involve stakeholders in the planning and implementation process.

Watershed Plan

The process began in October 2005 when the Collaborative formed three committees—technical, development/implementation, and education/outreach—to look into what should be in a watershed plan, what it would take to produce a plan, how it would be developed and implemented, and how to educate and involve stakeholders. These committees met and reported back to the Collaborative in late January 2006. The technical committee identified the following preliminary benefits of a watershed plan:

Improved community understanding, interest, and leadership in watershed issues;

Articulation of a local collaborative approach for protecting and improving water quality, water quantity, wetland and riparian habitat, and recreational opportunities;

Provide information and guidance to promote compatible land and river use practices;

A document to set priorities and planning projects;

Encourage partnerships to identify and fund mutually beneficial projects;

Open up avenues for funding projects addressing watershed health:

Identification of creative and acceptable ways to protect watershed health;

Efficient use of financial resources and effective use of agency and organizational personnel. Water quantity was identified as one of the five main topics and many of the issues associated with other topics are related to water quantity issues. The following watershed topics and issues of concern were identified during the 12/2/2005 technical specialists meeting:

Water Quality

runoff associated with current and past land use

State-identified impaired waters

groundwater quality impacts from individual septic systems

point and non-point sources

Source Water Assessment and Protection Program

reduced dilution effects from significant diverted flows

climate systems

Water Quantity

water supply thresholds (surface and groundwater)

transbasin diversions (amount and timing)

water conservation and re-use

water uses

water enforcement

water storage needs

instream flow management (minimum, maximum and optimum)

potential impacts of climate change

out of basin impacts (downstream calls, endangered fish, Colorado River Compact Agreement)

Aquatic, Wetland, and Riparian Resources

native fish protection

wildlife habitat

invasive species

heritage-endangered species

indicator species

expected conditions

Recreation

flat and white water boating

fish stocking

gold medal waters

public access

trails

recreation impacts on other water resources and uses

Land Use

conservation easements/open space

cultural heritage

energy development

urban runoff

impacts of decisions from different jurisdictions

land use changes

channel stability and flood control

cumulative effects

sustainable future growth

diversion points for municipal use

road de-icing and dust suppression methods

road locations

xericscaping

viewshed

Emergency Loan Agreements

The Conservancy worked with Representative Kathleen Curry to draft legislation to improve the ability to temporarily loan water for instream flow (HB 1039). This bill brought by

Representative Kathleen Curry and Senator Jim Isgar allows a water right owner to loan water to the Colorado Water Conservation Board for use as instream flow for a period not to exceed 120 days and no more than 3 years in a ten year period. This bill removed the previous requirement for a Governor declared drought emergency that added substantial delays to the process.

Water Rights Acquisitions

In Colorado, the intention of the grantor determines whether water rights pass with the deed to land. Rights may be granted separately from the land or by reservation of the water right by the grantor upon conveyance of the land.

Under Colorado's Instream Flow statute, C.R.S. § 37-92-102(3), the Colorado Water Conservation Board (CWCB) may purchase instream flow rights:

The Board also may acquire, by grant, purchase, donation, bequest, devise, lease, exchange, or other contractual agreement, from or with any person, including any governmental entity, such water, water rights, or interests in water in such amount as the Board determines is appropriate for stream flows or for natural surface water levels or volumes for natural lakes *to preserve or improve the natural environment to a reasonable degree* (emphasis added).

The Board may use any funds available to it . . . for acquisition of water rights and their conversion to instream flow rights.

See <u>www.cwcb.state.co.us/isf/Rules/Adopted_Rules.pdf</u> for explanation of rules governing the acquisition of instream flow rights.

To this end, the Conservancy hopes to partner with the Colorado Water Trust (CWT), a non-profit water conservation organization, and The Nature Conservancy (TNC) to acquire, through donation or purchase, or assist others in acquiring, senior water rights or interests in water rights along critical reaches such as on the Crystal and Roaring Fork rivers and Hunter Creek, using voluntary approaches from willing owners for conservation benefits.

Unused Contract Water

Ruedi was constructed by the United States Bureau of Reclamation (the Bureau) and made operational in May 1968. Ruedi's 102,373 acre-feet of storage provides replacement water for out-of-priority depletions from the Fryingpan-Arkansas Project to the Colorado River as well as replacement water for junior users in the Roaring Fork Watershed for West Slope agricultural, municipal, and industrial uses on a contractual basis.

Of Ruedi's capacity, 28,000 acre-feet of Ruedi's capacity is reserved for downstream calls, the Bureau considers 63 acre-feet to be the "dead-pool," too deep in the reservoir to be used, and another 1,032 acre-feet to be "inactive storage." The agency reserves 21,778 acre-feet to "enhance recreation" and another 10,865 acre-feet for the U.S. FWS for its endangered fish program. As of January 2003, the Bureau had marketing contracts in place for 12,319 acre-feet. That leaves approximately 21,650 acre-feet of "uncommitted" water for sale.

Dam Operations

The Bureau generally maintains Ruedi winter releases between 60 and 70 cfs, depending on snowpack. However, in dry years, such as 2002, winter releases dropped to 43 cfs, approximately one-third of the mean flow for winter releases. Low flows are problematic because 1) shelf ice is more likely to form on the edges and creeps toward the center, creating a channel too narrow and fast-moving for trout; and 2) anchor ice is more likely to form on the bottom of the river, scouring the river bottom and wiping out invertebrates that trout depend on year-round for food. Flows could go as low as 39 cfs, Ruedi's inflow.

The Bureau has indicated it would be willing to work with county governments, elected officials, and organizations in the Roaring Fork Valley to better manage Ruedi for the fishery and aquatic habitat in the lower Fryingpan River, as well as for angling access in the river. The Conservancy will continue to be a party to these discussions to help encourage management for these in-basin needs.

Land Use Planning and Practices

Implementation of water conservation practices to increase water quantity throughout the watershed will require altering land use planning and practices, including agriculture practices and urban/residential use.

To do so, the Conservancy must identify and target potentially harmful land use practices and work with the watershed's counties and municipalities. The Conservancy has already begun to take this approach with its storm water drainage program. Another focus is riparian areas. With the help of local governments, the Conservancy is working to protect critical riparian lands. A healthy riparian corridor plays a critical role in maintaining stream flows. The Conservancy is researching potential funding sources that can be used to lease or purchase riparian areas and their associated water rights where possible. Local government set-back regulations will be reviewed and possible adaptations may be suggested.

The Conservancy must also pursue and foster relationships with local farmers and ranchers to identify and encourage implementation of sustainable agricultural systems geared toward our high altitude, semi-arid climate. This may include coordination of regional discussions about sustainable practices (rotational grazing, nutrient cycling) providing funding to implement water efficient irrigation systems (lining of ditches construction or protection of wetlands, implementation of aquaculture systems), and identifying programs geared towards leasing agricultural lands.

Continued education and outreach can help influence individual practices of water use. Education/Outreach

Education and outreach is central to reaching the Conservancy's long-term goal of restoring healthy stream flows to the Watersheds waterways. It is also recognized as one of the most powerful ways to effect positive change. Since 1997, the Conservancy has conducted education programs with students of all ages throughout the Roaring Fork Valley. Educators teach students about the ecological, chemical, physical, and cultural significance of local riparian areas. The Conservancy works with over 25 school and civic groups from Aspen to Glenwood Springs and is committed to a watershed-wide approach to education.

The Conservancy hopes to expand its adult education program to increase awareness about the importance of xeriscaping, installing water and energy efficient resources, and generally using water in a sustainable way. To do so, the Conservancy may partner with, and/or support, other groups, such as the Colorado River Water Conservation District and American Leadership Forum, to host adult-oriented forums on various water conservation and policy issues to inspire interested public to take action and become involved in water quantity issues.

The Watershed Collaborative provides an ideal forum to reach a number of knowledgeable, interested, and influential entities in the Watershed.

Basin of Origin Mitigation

The Conservancy will look into future basin of origin mitigation bills and how they could help with water issues in the basin. The last bill was narrowly defeated in the house 2004 Colorado Legislative Session. In a decree for a water right that transfers water from one water division to another, John Salazar's bill would have required a water judge to include conditions to ensure that the present appropriation of water and prospective beneficial uses of water within the water division from which the water is exported will not be impaired or increased in cost at the expense of the water users in that division. The applicant for the decree must show that such exportation is needed after the preparation of an integrated water supply and demand plan and after an analysis of reasonable alternatives to such export.

Statewide Water Supply Initiative (SWSI) and House Bill 1177

The Conservancy is closely following two statewide projects and will make information from the Stream Flow Survey project available to decision makers.

The Statewide Water Supply Initiative was authorized by the Colorado Legislature in May 2003. The goal of SWSI is to help Colorado maintain adequate water supply for it citizens and the environment today and into the future. A final report was produced in November of 2004. The next phase of SWSI involves four groups consisting of state-wide participants to address the following specific issues:

- 1. Water efficiency
- 2. Non-permanent agricultural transfers
- 3. Quantifying recreational & environmental needs
- 4. Addressing the 20 percent "gap" between projected future water demands and availability, including development of alternatives.

House Bill 1177 passed in May 2005 will create a 25-member inter-basin compact committee to negotiate the equitable use of Colorado's waters. Under House Bill 1177 the nine roundtables from diverse parts of the state will analyze water management issues within their area and actively seek the input and advice of local stakeholders, local governments, water providers, and others interested in water management. Results will be forwarded to the Inter-basin Compact Committee and to other roundtables for consideration.

Appendix C: Summary of IHA Parameters and their Ecosystem Influences

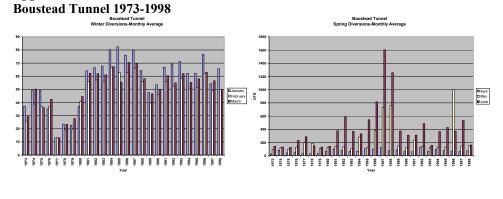
IHA PARAMETER GROUP	HYDROLOGIC	ECOSYTEM INFLUENCES
	PARAMETERS	
1. Magnitude of monthly water conditions	Mean or median value for each calendar month Subtotal 12 parameters	 Habitat availability for aquatic organisms Soil moisture availability for plants Availability of water for terrestrial animals Availability of food/cover for furbearing mammals Reliability of water supplies for terrestrial animals Access by predators to nesting sites Influences water temperature, oxygen levels, photosynthesis in
		water column
2. Magnitude and duration of annual extreme water conditions	Annual minima, 1-day mean Annual minima, 3-day means Annual minima, 7-day means	Balance of competitive, ruderal,and stress-tolerant organisms
	Annual minima, 30-day	Creation of sites for plant
	means	colonization
	Annual minima, 90-day means Annual maxima, 1-day mean	 Structuring of aquatic ecosystems by abiotic vs. biotic factor
	Annual maxima, 3-day means Annual maxima, 7-day means Annual maxima, 30-day means	 Structuring of river channel morphology and physical habitat conditions
	Annual maxima, 90-day means	Soil moisture stress in plants
	Number of zero-flow days	Dehydration in animals
	Base flow: 7-day minimum	Anaerobic stress in plants
	flow/mean flow for year Subtotal 12 parameters	 Volume of nutrient exchanges between rivers and floodplains Duration of stressful conditions
	Subtolul 12 parameters	such as low oxygen and concentrated chemicals in aquatic environments
		 Distribution of plant communities in lakes, ponds, floodplains
		 Duration of high flows for waste disposal, aeration of spawning beds in channel sediments
3. Timing of annual	Julian date of each annual	Compatibility with life cycles of
extreme water conditions	1-day maximum	organisms
- · · · · · · · · · · · · · · · · · · ·	Julian date of each annual	Predictability/avoidability of
	1-day minimum	stress for organisms
	Subtotal 2 parameters	 Access to special habitats during reproduction or to avoid predation
		Spawning cues for migratory fish
		Evolution of life history

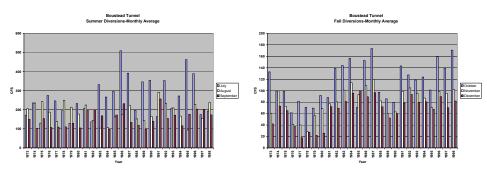
4. Frequency and duration of high and low pulses	Number of low pulses within each water year Mean or median duration of low pulses (days) Number of high pulses within each water year Mean or median duration of high pulses (days) Subtotal 4 parameters	strategies, behavioral mechanisms Frequency and magnitude of soil moisture stress for plants Frequency and duration of anaerobic stress for plants Availability of floodplain habitats for aquatic organisms Nutrient and organic matter exchanges between river and floodplain Soil mineral availability Access for waterbirds to feeding, resting, reproduction sites Influences bedload transport, channel sediment textures, and duration of substrate disturbance (high pulses)
5. Rate and frequency of water condition changes	Rise rates: Mean or median of all positive differences between consecutive daily values Fall rates: Mean or median of all negative differences between consecutive daily values Number of hydrologic reversals Subtotal 3 parameters	 Drought stress on plants (falling levels) Entrapment of organisms on islands, floodplains (rising levels) Desiccation stress on low-mobility streamedge (varial zone) organisms

The Nature Conservancy with Smythe Scientific Software and Totten Software Design, April, 2005. Indicators of Hydrologic Alteration Version 7 User's Manual.

Appendix C. (cont.) Summary of Environmental Flow Component (EFC) Parameters and their Ecosystem Influences

their Ecosystem Innuences		
EFC TYPE	HYDROLOGIC PARAMETERS	ECOSYTEM INFLUENCES
1. Monthly low	Mean or median values of low	· Provide adequate habitat for
flows	flows during each calendar	aquatic organisms
	month	· Maintain suitable water
		temperatures,
	Subtotal 12 parameters	dissolved oxygen, and water
		chemistry
		· Maintain water table levels
		in floodplain, soil
		moisture for plants
		· Provide drinking water for
		terrestrial animals
		· Keep fish and amphibian
		eggs suspended
		· Enable fish to move to

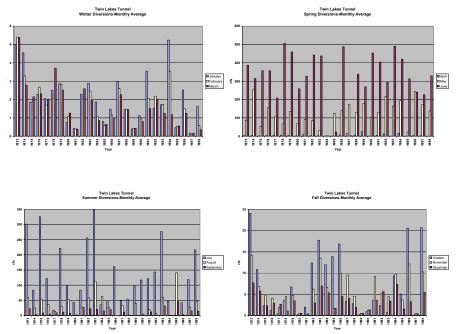

2. Extreme low flows	Frequency of extreme low flows during each water year or season Mean or median values of extreme low flow event:	feeding and spawning areas · Support hyporheic organisms (living in saturated sediments) · Enable recruitment of certain floodplain plant species · Purge invasive, introduced species from aquatic and riparian communities · Concentrate prey into limited areas to benefit predators
3. High flow pulses	Frequency of high flow pulses during each water year or season Mean or median values of high flow pulse event:	· Shape physical character of river channel, including pools, riffles · Determine size of streambed substrates (sand, gravel, cobble) · Prevent riparian vegetation from encroaching into channel · Restore normal water quality conditions after prolonged low flows, flushing away waste products and pollutants · Aerate eggs in spawning gravels, prevent siltation · Maintain suitable salinity conditions in estuaries
4. Small floods	Frequency of small floods during each water year or season Mean or median values of small flood event:	Applies to small and large floods: Provide migration and spawning cues for fish Trigger new phase in life cycle (i.e. insects) Enable fish to spawn in floodplain, provide


	flow) • Rise and fall rates Subtotal 6 parameters	nursery area for juvenile fish Provide new feeding opportunities for fish, waterfowl Recharge floodplain water table Maintain diversity in floodplain forest types through prolonged inundation (i.e. different plant species have different tolerances) Control distribution and abundance of plants on floodplain Deposit nutrients on floodplain
5. Large floods	Frequency of large floods during each water year or season Mean or median values of large flood event:	Applies to small and large floods: · Maintain balance of species in aquatic and riparian communities · Create sites for recruitment of colonizing plants · Shape physical habitats of floodplain · Deposit gravel and cobbles in spawning areas · Flush organic materials (food) and woody debris (habitat structures) into channel · Purge invasive, introduced species from aquatic and riparian communities · Disburse seeds and fruits of riparian plants · Drive lateral movement of river channel, forming new habitats (secondary channels, oxbow lakes) · Provide plant seedlings with

	prolonged access to soil moisture

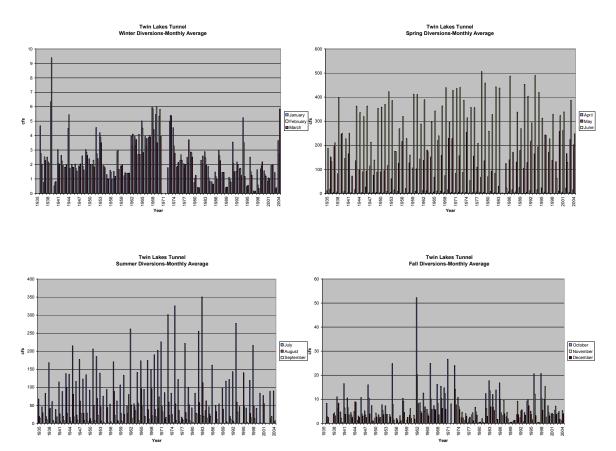
The Nature Conservancy with Smythe Scientific Software and Totten Software Design, April, 2005. Indicators of Hydrologic Alteration Version 7 User's Manual.

Appendix D: Seasonal Tunnel Diversions



Date source: Hydrobase (Average calculated from daily mean cfs)

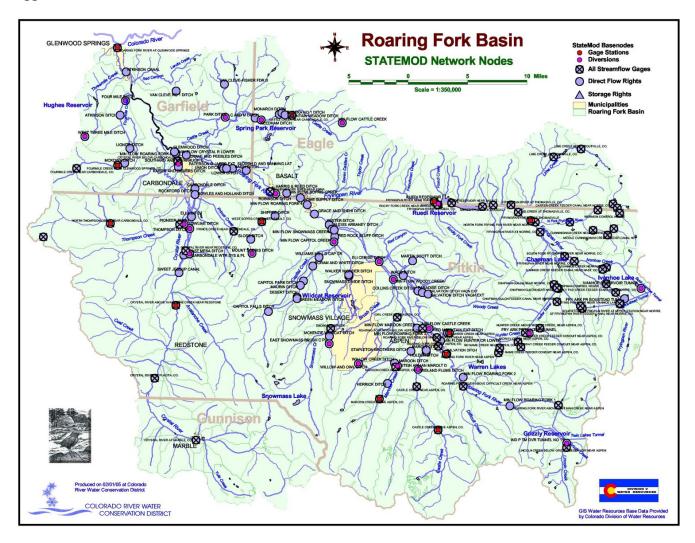
Note: Y-axis is different for each season

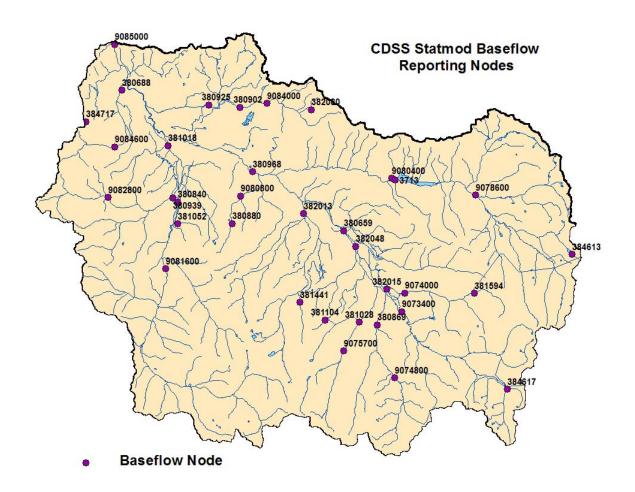

Twin Lakes Tunnel 1973-1998

Date source: http://cdss.state.co.us/DNN/ (Monthly acre feet totals converted to cfs)

Note: Y-axis is different for each season

Twin Lakes Tunnel 1935-2004


Note: Y-axis is different for each season


Appendix E: Real Time Stream Flow Gages

SITE NUMBER	STATION NAME	ABBRE- VIATION	CURRENT OPERATOR	DRAIN- AGE AREA (SQ.MI)	BEGIN DATE*
9072550	ROARING FORK RIVER ABOVE LOST MAN CREEK NEAR ASPEN	ROALMCCO	BOR	9.1	10/1/1980
9073005	LINCOLN CREEK BELOW GRIZZLY RESERVOIR NEAR ASPEN	LINGRRCO	BOR	15.2	10/1/1980
9073300	ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN	ROADIFCO	USGS	75.8	10/1/1979
9073400	ROARING FORK RIVER NEAR ASPEN	ROAASPCO	USGS	108	10/1/1964
9074000	HUNTER CREEK NEAR ASPEN	HUNTASCO	USGS	41.1	6/1/1950
9077000	SNOWMASS CREEK	SNOCRECO	CDWR		
9077200	FRYING PAN RIVER NEAR IVANHOE LAKE	FRYIVLCO	CDWR	18.7	10/1/1963
9077610	IVANHOE CREEK NEAR NAST	IVCRNACO	CDWR	9.43	10/1/1975
9077800	SOUTH FORK FRYINGPAN RIVER AT UPPER STATION NEAR NORRIE	FRYSFUCO	CDWR	11.5	10/1/1963
9077945	CHAPMAN GULCH NEAR NAST	CHAGULCO	CDWR	6	10/1/1972
9078500	NORTH FORK FRYING PAN RIVER NEAR NORRIE	FRYNFNCO	CDWR	42	10/1/1910
9078600	FRYINGPAN RIVER NEAR THOMASVILLE	FRYTHOCO	CDWR	134	10/1/1975
9080100	FRYING PAN RIVER AT MEREDITH	FRYMERCO	CDWR	191	10/1/1910
9080300	ROCKY FORK CREEK NEAR MEREDITH, CO.	RFCMERCO	CDWR	12.3	10/1/1968
9080400	FRYINGPAN RIVER NEAR RUEDI	FRYRUDCO	USGS	238	10/1/1964
9081000	ROARING FORK RIVER NEAR EMMA	ROAEMMCO	USGS	853	3/12/1998
9081600	CRYSTAL RIVER ABOVE AVALANCHE CREEK NEAR REDSTONE	CRYAVACO	USGS	167	10/1/1955
9083800	CRYSTAL RIVER BELOW CARBONDALE, CO.	CRYBECARB	USGS	350	5/18/2000
9085000	ROARING FORK RIVER AT GLENWOOD SPRINGS	ROAGLECO	USGS	1451	4/1/1906
	ROARING FORK RIVER BELOW MAROON CREEK NEAR ASPEN	ROABMCCO	CDWR		11/4/1988
	BUSK-IVANHOE TUNNEL	BUSTONCO	CDWR		
	CHARLES H. BOUSTEAD TUNNEL	BOUTONCO	CCWR		
	RUEDI RESERVOIR NEAR BASALT	RUERESCO	CDWR		

^{*} Not always continuous

Appendix F: CDSS StateMod nodes

Appendix G: Gages used in instream flow analysis and CWCB Instream Flow Tabulation

STATION NAME	ISF	CASE NUMBER	CFS	DATES	CFS	DATES	APPROP. DATE
CRYSTAL RIVER BELOW CARBONDALE,CO	Yes	5-75W2720	100	5/1-9/30	60	10/1-4/30	5/1/1975
ROARING FORK RIVER NEAR EMMA	Yes	5-85CW639	145	4/1-9/30	75	10/1-3/31	11/8/1985
CHAPMAN GULCH NEAR NAST	Yes	5-73W1950	3	4/1-9/30	1.5	10/1-3/31	7/12/1973
ROARING FORK RIVER ABOVE LOST MAN CREEK NEAR ASPEN	Yes	5-76W2950	10	1/1-12/31			1/14/1976
FRYINGPAN RIVER AT MEREDITH	Yes	5-73W1955	**				
NORTH FORK FRYINGPAN NEAR NORRIE	N/A	NONE					
CRYSTAL RIVER ABOVE AVALANCHE CREEK NEAR REDSTONE	Yes	5-75W2721	80	5/1-9/30	40	10/1-4/30	5/1/1975
HUNTER CREEK NEAR ASPEN	Yes	5-79CW190	16	1/1-12/31			1/31/1979
ROARING FORK RIVER ABOVE DIFFICULT CREEK NEAR ASPEN	Yes	5-76W2949	15	1/1-12/31			1/14/1976
ROARING FORK RIVER BELOW MAROON CREEK NEAR ASPEN	Yes	5-85CW646	55	4/1-9/30	30	10/1-3/31	11/8/1985
FRYINGPAN RIVER NEAR THOMASVILLE	Yes	5-73W1955	**				
FRYINGAN RIVER NEAR RUEDI	Yes	5-73W1945	110	5/1-10/31	39	11/1-4/30	7/12/1973
ROARING FORK RIVER NEAR ASPEN	Yes	5-76W2948	32	1/1-12/31			1/14/1976
ROARING FORK RIVER AT GLENWOOD SPRINGS	N/A	NONE					
SNOWMASS CREEK	TBD	5-76W2943A	***				
LINCOLN CREEK BELOW GRIZZLY RESERVOIR	Yes	5-76W2936	8	1/1-12/31			1/14/1976
FRYINGPAN RIVER NEAR IVANHOE LAKE	*	5-73W1948	12	4/1-9/30	6	10/1-3/31	7/12/1973
IVANHOE CREEK NEAR NAST	*	5-73W1952	2	4/1-9/30	1	10/1-3/31	7/12/1973
ROCKY FORK CREEK NEAR MEREDITH	N/A	NONE					
SOUTH FORK FRYINGPAN RIVER AT UPPER STATION NEAR NORRIE	*	5-73W1947	6	4/1-9/30	3	10/1-3/31	7/12/1973

*Data unavailable past 1997

** ISF Amounts on the Fryingpan River Case Number: 5-73W1955

CFS	DATES	APPROP DATE												
100	4/1-4/30	150	5/1-5/31	200	6/1-6/30	100	7/1-7/31	75	8/1-8/31	65	9/1-9/30	30	10/1-3/31	7/12/1973

*** ISF on Snowmass Creek Case Number 5-76W2943A

Instream Flow Recommendation:

12 cfs (04/1 - 10/15)

Multi-stage winter instream flows on the reach of Snowmass Creek between West Snowmass Creek and Capitol Creek.

Percentile Water Year	Predicted Recurrence Interval	Average daily stream flow from October 11 through October 15	Multi-stage Instream Flows
50% or Greater	1:2	Greater than or equal to 29.0 cfs	12 cfs (10/16 - 11/30) 10 cfs (12/1 - 03/31)
25 th % to 50 th %	1:4 to 1:2	Less than 29.0 cfs and greater than or equal to 27.0 cfs	12 cfs (10/16 - 10/31) 10 cfs (11/1 - 12/14) 9 cfs (12/15 - 12/31) 10 cfs (01/1 - 03/31)
10 th % to 25 th %	1:10 to 1:4	Less than 27.0 cfs and greater than or equal to 19.0 cfs	12 cfs (10/16 - 10/31) 10 cfs (11/1 - 11/14) 9 cfs (11/15 - 12/21) 8.5 cfs (12/22 - 12/28) 8 cfs (12/29 - 12/31) 9 cfs (01/1 - 03/31)
Less than 10 th %	1:10	Less than 19.0 cfs	9 cfs (10/16 - 10/21) 8 cfs (10/22 - 10/31)

		7 cfs (11/1 - 12/31)
		8 cfs (01/1 - 03/31)

Appendix H: Conservation Action Planning

The Nature Conservancy's mission is to conserve a <u>set of places</u> that will conserve biodiversity globally. TNC does this by defining and developing action plans for **conservation areas**. Conservation areas are geographically defined regions:

- where conservation action can be effectively taken and
- that are, or have the potential to be, ecologically functional systems (e.g., relatively intact hydrologic cycles or fire regimes) supporting species and biological systems representative of the ecoregion (large areas defined by their distinct climate, geology and native species) in which they lie.

Working with partners, The Nature Conservancy uses an adaptive management process to develop and implement Conservation Action Plans. Through collaboration and a science-based approach, Conservation Action Plans:

- select key features of biodiversity (i.e., conservation targets) within each conservation area and assess conservation strategies for those key features;
- identify the conditions or activities that are threatening or may threaten the species and systems of concern;
- develop strategies with partners for reducing threats in the conservation areas and restoring viability and integrity to degraded species and systems of concern; and
- develop the measures of success that will be used to (1) understand if the conservation strategies are driving toward effective conservation and (2) to revise, improve, and share information on the efficacy of the different strategies.

The Conservation Action Plans that result from this process are considered to be adaptable over time and use the measures of progress and success to stimulate continued thinking and changing approaches to conservation.

The Nature Conservancy formally calls the adaptive management program behind the Conservation Action Plans the "Five-S Framework," which is shorthand for Systems, Stresses, Sources, Strategies, and (measures of) Success. The 5-S Framework is widely used both within and outside The Nature Conservancy to design conservation strategies and develop measures of both strategy effectiveness and conservation status. The table below gives examples for each of these S's.

Steps in TNC's "Five S" Process for Conservation Action Planning

"S" Step	Purpose & Notes	Example
1. Systems	To identify and select representative "targets" of	System: Montane Riparian
	the ecological systems, communities, and species in	Forests
	the area. This selection considers the viability (size,	Community: Narrowleaf
	condition, and landscape context) of each target and	Cottonwood/red osier
	the overall biodiversity health of the area.	dogwood riparian forest
		Species: Colorado River
		cutthroat Trout
2. Stresses	To identify and rank the major impairments to the	Decreased flow and increased
	viability of each target that are currently occurring	water temperature
	or that are expected to occur within the next 10	
	years.	
3. Sources	To identify and rank the factors that are directly	Water diversions
	causing the stresses now, or that are expected to	
	cause stress in the next 10 years.	
4.	To identify and rank opportunities to reduce or	Decrease the amount of
Strategies	eliminate the key stresses that are lowering or may	diversions in key stretches
	lower the viability of the targets.	during critical periods
5. Success	To identify measures and monitoring strategies for	Measure water temperatures
	evaluating whether conservation efforts are	Monitor trout population size
	maintaining or enhancing the viability of the	
	targets.	

Through broad application, The Nature Conservancy has found that using the 5-S Framework for conservation action planning yields objective information on species status, degree of threats, and progress toward conservation success. Such objective information, when available, empowers a range of stakeholders to constructively discuss, interact, and consider alternative ways of acting to conserve natural systems.

Within this framework, the importance of # 5, the **Success Step** should not be underestimated. It is critical to understand if conservation strategies are having their intended impact. If they are not, the conservation targets may be at increasing risk. As a result, the efficiency and effectiveness of the strategies would then be low. Conversely, if a strategy is succeeding brilliantly, then its lessons should be exported to other applications in order to advance conservation success as a whole.

These issues are of critical interest to practitioners implementing the strategies, their managers, their organizations, and the stakeholders and donors that support and rely on them.

Additional Online Information:

An overview of the 5S Framework for planning can be downloaded at: http://conserveonline.org/docs/2005/08/TNC_CAP_Basic_Practices_v_17_Jun_05.pdf
The latest version of the CAP/5S Workbook, used to document the process can be downloaded at: http://conserveonline.org/docs/2005/08/CAP_v4b.xls

The User Manual for the CAP/5S Workbook can be downloaded at: http://conserveonline.org/docs/2005/03/CPM%20User%20Manual%20v4b 022805 pdf6.pdf

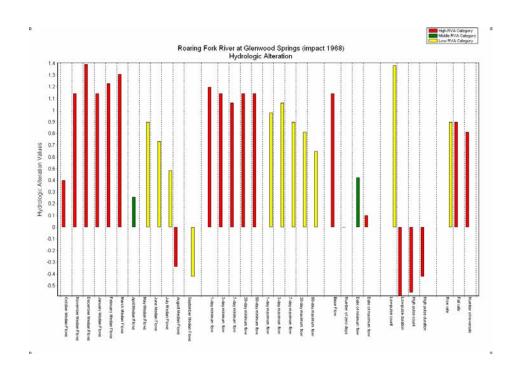
Appendix I: Non-Parametric IHA Scorecards

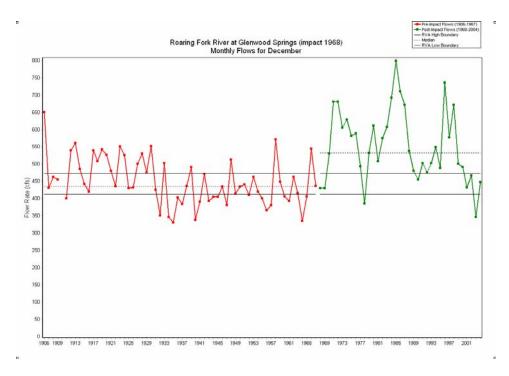
Non-parametric IHA Scorecard for the gage at the Roaring Fork River at Glenwood Springs. The pre-impact period (1906-1967) had 61 years of data and a mean annual flow of 1370 cfs compared to the post-impact period (1968-2004) with 37 years of data and a mean annual flow of

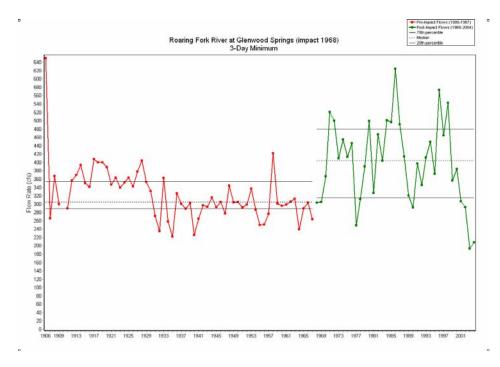
1167 cfs. Bolded significance values are statistically significant at P<.05.

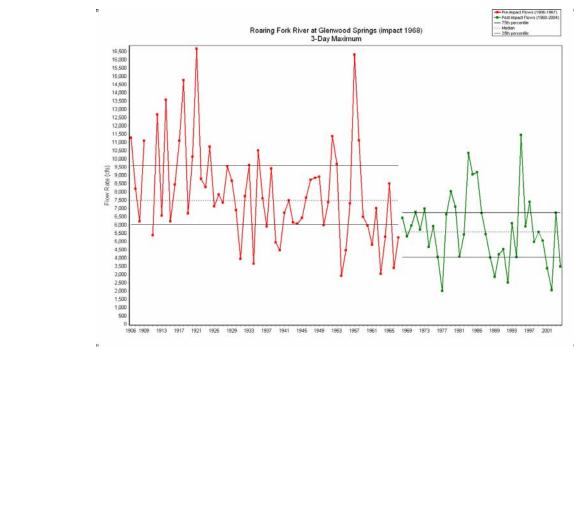
	MEDIAN	MEDIAN		
	PRE (cfs)	POST (cfs)	SIGNIFICANCE	
Parameter Group #1				
October	624	639		0.764
November	523	635		0.000
December	435	532		0.000
January	380	464		0.000
February	362.5	452		0.000
March	382	506		0.000
April	715.5	729.5		0.898
May	2620	1830		0.008
June	4935	3930		0.030
July	2210	1740		0.239
August	869	804		0.628
September	650	673		0.767
*				
Parameter Group #2	-			
1-day minimum	292	390		0.000
3-day minimum	305	404		0.000
7-day minimum	327.7	418.4		0.000
30-day minimum	358.4	436.7		0.000
90-day minimum	376.8	464.8		0.000
1-day maximum	8040	5720		0.000
3-day maximum	7473	5573		0.002
7-day maximum	6980	5339		0.005
30-day maximum	5503	4272		0.003
90-day maximum	3608	2878		0.030
Number of zero days	0	0		0.000
Base flow	0.2544	0.3751		0.000
Parameter Group #3				
Date of minimum	37	43		0.347
Date of maximum	164	161		0.277
	101	101		0.2 / /
Parameter Group #4	L			
Low pulse count	8	3		0.000
Low pulse duration	3.5	2.5		0.152
High pulse count	2	2		0.043
High pulse duration	46.5	31		0.517
Low Pulse Threshold	420	31		
High Pulse Level	1380			
<u> </u>	1300			

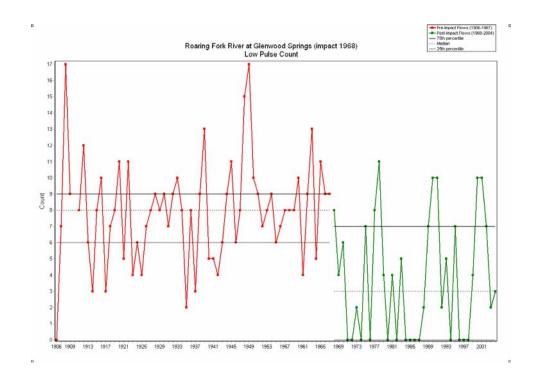
Parameter Group #5			
Rise rate	38	29	0.021
Fall rate	-33	-27	0.011
Number of reversals	121	132	0.001
EFC Low flows			
October Low Flow	599	626	0.497
November Low Flow	523	634	0.000
December Low Flow	435	532	0.000
January Low Flow	397.5	464	0.000
February Low Flow	369.5	456.5	0.000
March Low Flow	395	506	0.000
April Low Flow	593	669	0.041
May Low Flow	1088	1043	0.610
June Low Flow	1210	1036	0.783
July Low Flow	1010	1003	0.829
August Low Flow	780	788	0.931
September Low Flow	619.5	673	0.353
EFC Parameters			
Extreme low peak	310	315	0.558
Extreme low duration	2	2.5	0.017
Extreme low timing	40.5	45	0.616
Extreme low freq.	6	0	0.210
High flow peak	1528	2100	0.000
High flow duration	7.75	14	0.017
High flow timing	172	163	0.640
High flow frequency	3	3	0.339
High flow rise rate	177.3	164	0.434
High flow fall rate	-115.8	-122.2	0.300
Small Flood peak	9660	9600	0.958
Small Flood duration	92	104	0.089
Small Flood timing	166	180	0.000
Small Flood freq.	0	0	0.000
Small Flood rise rate	226.8	149.5	0.012
Small Flood fall rate	-154.4	-155.5	0.979
Large flood peak	14700	11800	0.317
Large flood duration	111.5	116	0.660
Large flood timing	166	194	0.000
Large flood freq.	0	0	0.000
Large flood rise	288.1	173.1	0.501
Large flood fall	-247.9	-189.8	0.608

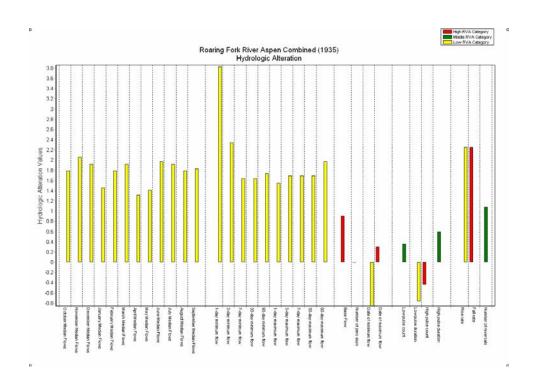

To provide a long term record of stream flows above Aspen two gages-the Roaring Fork River at Aspen (09073500) and the Roaring Fork near Aspen (09073400) were combined. The former gage operated from 1910-1964 with no data from 1922-1932 and the latter from 1964-present. Below is the resulting non-parametric IHA Scorecard. The pre-impact period (1911-1934) had

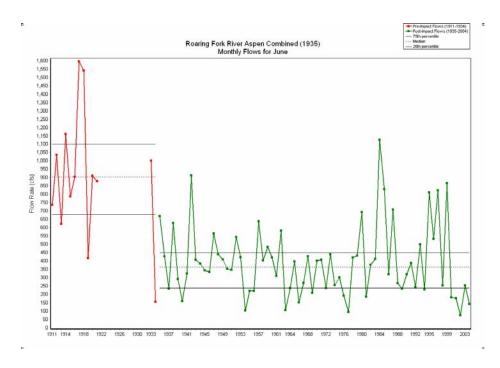

only 13 years of data and a mean annual flow of 169.2 cfs compared to the post-impact period (1935-2004) with 70 years of data and a mean annual flow of 92.64 cfs. Bolded significance values are statistically significant at P<.05.

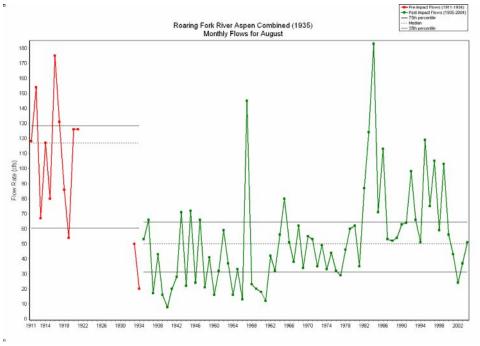

	MEDIANS	MEDIANS	CICNIFICANCE
	PRE (cfs)	POST(cfs)	SIGNIFICANCE
Parameter Group #1			
October	59	37	0.002
November	53.5	29	0.000
December	40	26	0.000
January	30	24	0.004
February	33	23	0.000
March	33	22	0.000
April	60	39.75	0.008
May	272	175.5	0.010
June	902.5	364.3	0.008
July	362	94.5	0.007
August	117	50	0.018
September	65.5	39.75	0.010
Parameter Group #2			
1-day minimum	25	16.5	0.029
3-day minimum	25	18	0.034
7-day minimum	25	18.57	0.039
30-day minimum	30	20.08	0.010
90-day minimum	30.88	22.02	0.002
1-day maximum	1430	681.5	0.025
3-day maximum	1317	623.3	0.019
7-day maximum	1199	553.8	0.004
30-day maximum	972.2	398.7	0.001
90-day maximum	557.6	244.7	0.000
Number of zero days	0	0	0.000
Base flow	0.1591	0.2031	0.142
		0.200	****
Parameter Group #3			
Date of minimum	32	51.5	0.227
Date of maximum	161	161	0.955
Parameter Group #4			
Low pulse count	5	5	0.777
Low pulse duration	5	5	0.809
High pulse count	3	2	0.055
High pulse duration	14	28.75	0.073
Low Pulse Threshold	36		
High Pulse Level	134		
Parameter Group #5			
Rise rate	7	3	0.000
11100 1410		1	0.000

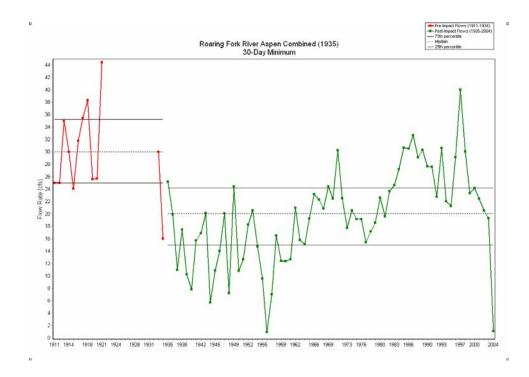

Fall rate	-6	-3	0.000
Number of reversals	84	117	0.000
EFC Low flows			
October Low Flow	57	38	0.002
November Low Flow	53.5	32	0.000
December Low Flow	40	31	0.003
January Low Flow	31.5	29	0.112
February Low Flow	34	29	0.039
March Low Flow	33	30	0.041
April Low Flow	44.25	42	0.518
May Low Flow	96.5	75	0.179
June Low Flow	93.5	111	0.093
July Low Flow	87.75	76.25	0.362
August Low Flow	78	49	0.027
September Low Flow	63	41	0.000
-			
EFC Parameters			
Extreme low peak	24	24	0.562
Extreme low duration	4.25	3.5	0.643
Extreme low timing	60	343	0.030
Extreme low freq.	1	7	0.001
High flow peak	140	124	0.426
High flow duration	6	5	0.499
High flow timing	213.5	172	0.015
High flow frequency	3	4	0.014
High flow rise rate	24.5	18.39	0.021
High flow fall rate	-10.53	-12.06	0.182
Small Flood peak	1595	1695	0.630
Small Flood duration	93.5	82	0.429
Small Flood timing	162.5	176.5	0.221
Small Flood freq.	0	0	0.000
Small Flood rise rate	56.74	42.17	0.404
Small Flood fall rate	-25.69	-37.07	0.049
Large flood peak	2230		0.000
Large flood duration	90		0.000
Large flood timing	166		0.000
Large flood freq.	0	0	0.000
Large flood rise	59.42		0.000
Large flood fall	-38.51		0.000
Flow level to begin a high flow event	is 134.750		
Flow level to end a high flow event is	55.000		
Flow level to begin an extreme low fl	ow is 26.000		

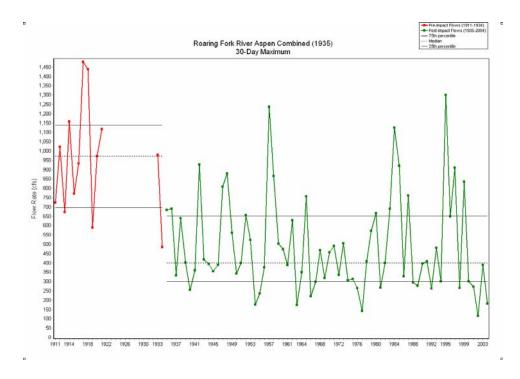

Appendix J: IHA results for two gages

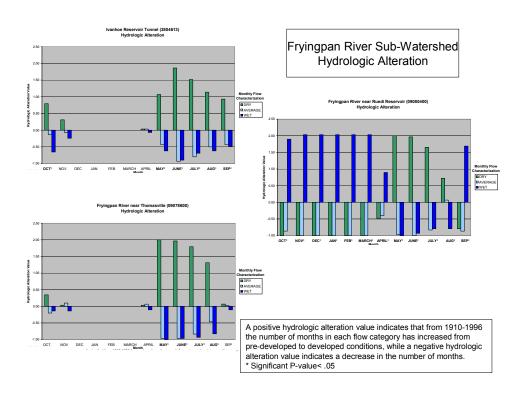


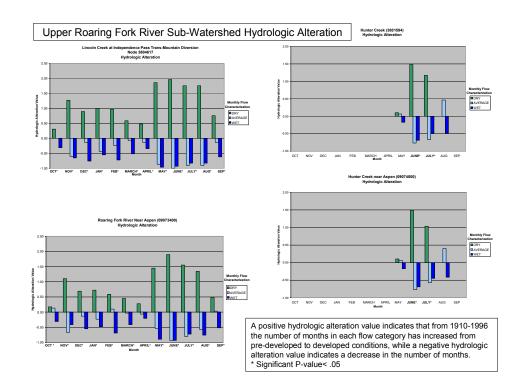








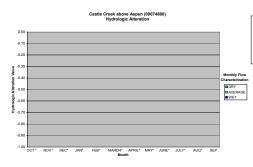



Appendix K: Hydrologic alteration results for each node (upstream to downstream order by sub-watershed)

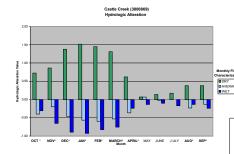
Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Fryingpan River Sub-Watershed

Fryingpan Rive	r Sub-Water	rshed	•						•			
Ivanhoe Reservo	ir Tunnel	Node: 38	04613									
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	4.49	2.88	2.54	2.08	2.08	2.50	8.05	44.74	80.69	27.21	9.91	5.4
Developed	2.77	2.75	2.54	2.08	2.08	2.50	7.85	33.47	26.70	4.23	5.00	3.60
Percent	61.78	95.34	100.00	100.00	100.00	100.00	97.49	74.81	33.08	15.54	50.45	66.31
Significance	0.000*	0.158	1		1	1	0.596		0.000*	0.000*	0.000*	0.000
		FALL			WINTER			SPRING			SUMMER	
Alteration		moderate			none			high			severe	
Overall Alteration												high
Fryingpan River	near Thoma	asville N	ode: 09078	600								
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	46.23	29.78	26.18			25.86			831.87	280.50	102.22	
Developed	41.44	29.65	26.18	21.39	21.45	25.86	82.78	217.77	200.00	100.00	75.01	54.20
Percent	89.64	99.55	100.00	100.00	100.00	100.00	99.76		24.04	35.65	73.38	96.73
Significance	0.117	0.727	0.961	0.999		0.989	0.758		0.000*	0.000*	0.000*	0.36
		FALL			WINTER			SPRING			SUMMER	
Alteration	1	none			none			high			high	
Overall Alteration												moderate
Fryingpan River	near Ruedi	Reservoir		Node: 090	80400							
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	84.97	57.30	46.68	41.46	42.17	49.24	125.84	648.92	1141.68	379.18	152.92	92.25
Developed	171.40	153.46	136.53	130.07	138.27	137.00	172.85	110.01	122.97	181.84	121.42	177.0
Percent	201.72	267.83	292.51	313.69	327.88	278.23	137.35	16.95	10.77	47.96	79.40	191.89
Significance	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
		FALL			WINTER			SPRING			SUMMER	
Alteration	-	severe			severe			severe			severe	
Overall Alteration												severe

 $\textbf{bold*} \ significant \ at \ P{<} \ .05$



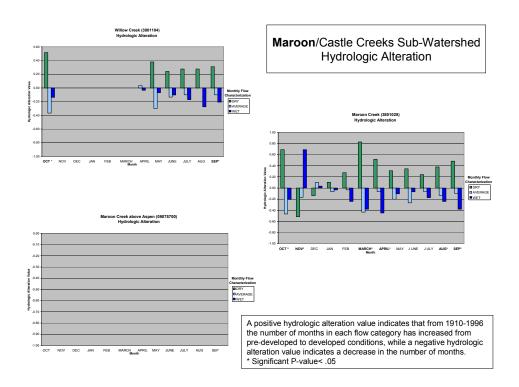
Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Upper Roaring Fork River Sub-Watershed
Lincoln Creek at Trans-mountian Diversion Independence Pass


NODE: 3804617

Lincoln Creek at	Trans-mou	ntian Dive	rsion Inde	oendence P	ass		NODE: 38	04617				
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	36.47	26.33	22.07	18.22	20.72	20.78	36.78	245.03	561.76	202.54	69.96	43.54
Developed	31.27	18.91	18.13	15.56	18.36	18.57	28.80	80.39	23.81	3.94	27.19	34.56
Percent	85.75	71.85	82.17	85.36	88.61	89.36	78.30	32.81	4.24	1.95	38.87	79.37
Significance	0.004*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
		FALL			WINTER			SPRING			SUMMER	
Alteration		severe			severe			severe			severe	
Overall Alteration												severe
Roaring Fork Ne	ar Aspen		NODE: 09	073400								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	52.10	37.61	31.53	26.04	29.58	29.69	52.54	350.04	802.52	289.35	99.94	62.20
Developed	47.91	30.18	27.80	23.43	27.22	27.39	44.52	180.19	258.35	89.32	52.72	52.55
Percent	91.96	80.25	88.19	89.98	92.00	92.25	84.73	51.48	32.19	30.87	52.75	84.49
Significance	0.037	0.000*	0.000*	0.000*	0.001*	0.003*	0.007*	0.000*	0.000*	0.000*	0.000*	0.006*
		FALL			WINTER			SPRING			SUMMER	
Alteration		severe			severe			severe			severe	
Overall Alteration												severe
Hunter Creek		NODE: 38	01594									
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	11.35	8.03	5.59	5.05	4.74	5.26	16.28	131.44	225.44	60.23	20.48	12.52
Developed	11.35	8.03	5.59	5.05	4.74	5.26	16.28	122.36	59.21	21.00	20.48	12.52
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	93.09	26.27	34.86	100.00	100.00
Significance	0.994	1	1	1	1	1	0.916	0.317	0.000*	0.000*	0.253	0.999
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			moderate			moderate	
Overall Alteration												moderate
Hunter Creek		NODE: 09	074000									
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	14.20	10.04	6.99	6.31	5.92	6.58	20.35	164.30	281.80	75.29	25.60	15.65
Developed	14.20	10.04	6.99	6.31	5.92	6.58	20.35	154.90	118.37	36.84	25.60	15.65
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	94.28	42.00	48.93	100.00	100.00
Significance	1	1	1	1	1	1	0.936	0.398	0.000*	0.000*	0.414	0.999
		FALL			WINTER			SPRING			SUMMER	
Alteration	1	none			none			moderate			moderate	
Overall Alteration												moderate

 $\textbf{bold*} \ significant \ at \ P{<.05}$

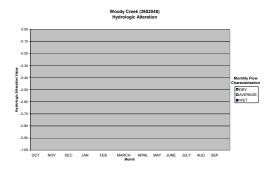
Maroon/**Castle** Creeks Sub-Watershed Hydrologic Alteration

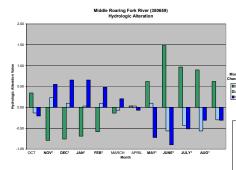

A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months.

* Significant P-value< .05

 $Comparison \ of \ pre-developed \ and \ developed \ flows \ derived \ from \ Colorado \ River \ Decision \ Support \ System \ Simulation \ Models \ Maroon/Castle \ Creek \ Sub-Watershed$

Castle Creek abo	ve Aspen		NODE: 09	074800								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	16.59	15.21	12.73	9.95	9.81	9.63	14.19	69.42	175.21	97.00	43.68	28.27
Developed	16.59	15.21	12.73	9.95	9.81	9.63	14.19	69.42	175.21	97.00	43.68	28.27
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none
Castle Creek		NODE: 38	30086 <u>9</u>									
Castle Creek Medians	ОСТ	NODE: 38		JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
	OCT 36.32			JAN 20.70		MARCH 22.21	APRIL 35.30		JUNE 254.59	JULY 155.92	AUG 76.83	
Medians		NOV	DEC					122.67				58.54
Medians Pre-developed	36.32	NOV 21.77	DEC 22.22	20.70	19.70	22.21	35.30	122.67	254.59	155.92	76.83	58.54
Medians Pre-developed Developed	36.32 31.10	NOV 21.77 15.77	DEC 22.22 15.71	20.70 14.33	19.70 13.59	22.21 16.71	35.30 30.68	122.67 115.49	254.59 245.08	155.92 144.57 92.72	76.83 68.71	58.54 52.02
Medians Pre-developed Developed Percent	36.32 31.10 85.63 0.001 *	21.77 15.77 72.44	22.22 15.71 70.72	20.70 14.33 69.21	19.70 13.59 69.01	22.21 16.71 75.25	35.30 30.68 86.91 0.020 *	122.67 115.49 <i>94.15</i>	254.59 245.08 96.26	155.92 144.57 92.72 0.258	76.83 68.71 89.44	58.54 52.02 88.86 0.011 *
Medians Pre-developed Developed Percent	36.32 31.10 85.63 0.001*	21.77 15.77 72.44 0.000 *	22.22 15.71 70.72	20.70 14.33 69.21	19.70 13.59 69.01 0.000 *	22.21 16.71 75.25	35.30 30.68 86.91 0.020 *	122.67 115.49 94.15 0.242	254.59 245.08 96.26	155.92 144.57 92.72 0.258	76.83 68.71 89.44 0.045 *	58.54 52.02 88.86 0.011 *


bold* significant at P< .05


Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Maroon/Castle Creek Sub-Watershed Willow Creek NODE: 3801104

Willow Creek		NODE: 38	<u>801104</u>									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	9.90	8.12	6.46	5.29	4.42	4.34	5.60	21.56	72.67	49.80	24.35	12.35
Developed	8.55	8.12	6.46		4.42	4.34	5.60		69.19	45.28	21.52	
Percent	86.36	100.00	100.00	100.00	100.00	100.00	99.85	92.08	95.21	90.92	88.38	90.95
Significance	0.004*	1	1	1	1	1	0.999	0.268	0.219	0.166	0.059	0.038*
		FALL			WINTER			SPRING			SUMMER	
Alteration		moderate			none			none	_		none	
Overall Alteration												moderate
Maroon Creek a	bove Aspen		NODE:09	075700								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	33.33	27.35	21.75	17.78	14.88	14.61	18.86	72.58	244.68	167.69	82.01	41.59
Developed	33.33	27.35	21.75	17.78	14.88	14.61	18.86	72.58	244.68	167.69	82.01	41.59
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	. 1	1	1	1	1	1	1	1	1	. 1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none
		NODE M	04020									
Maroon Creek	o cm	NODE: 38								****	1710	CERT
Medians Pre-developed	OCT 36.24	NOV 28.44	DEC 23.21	JAN 19.46	FEB 16.69	MARCH 17.00	APRIL 22.17	MAY 79.08	JUNE 260.38	JULY 178.67	AUG 87.71	SEPT 46.36
Developed Developed	31.56	30.96			16.16	17.00	19.78		247.52		74.41	38.20
Percent	87.08	108.83	101.51	98.45	96.82	93.40	89.20	93.50	95.06	92.62	84.84	82.40
Significance	0.003*	0.006*	0.636	0.682	0.182	0.001*	0.003*	0.226	0.22	0.239	0.023*	0.001*
		FALL			WINTER			SPRING			SUMMER	
Alteration		high			moderate			moderate			high	
Overall Alteration												high

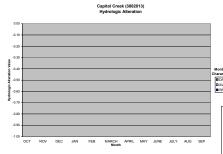
 $\textbf{bold*} \ significant \ at \ P{<} \ .05$

Upper Middle Roaring Fork River Sub-Watershed Hydrologic Alteration

A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months.

* Significant P-value < .05

Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Upper Middle Roaring Fork River Sub-Watershed

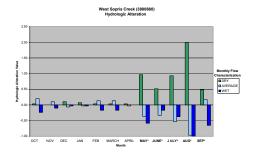

Woody Creek		NODE: 38	802048									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	8.57	6.07	4.22	3.81	3.57	3.98	12.29	99.24	170.21	45.48	15.47	9.45
Developed	8.57	6.07	4.22	3.81	3.57	3.98	12.29	99.24	170.21	45.48	15.47	9.45
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none

Middle Roaring	Fork River		NODE:38	00659								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	191.9	120.9	110.8	100.7	97.42	107.6	184.5	918	1951	877.4	392.2	244.6
Developed	178.1	138.1	124.7	108.9	103.48	110.1	176.7	703.4	1221	596.1	288.7	216.9
Percent	92.81	114.20	112.50	108.13	102.30	102.30	95.80	76.63	62.59	67.94	73.61	88.66
Significance	0.156	0.000*	0.000*	0.000*	0.000*	0.152	0.324	0.000*	0.000*	0.000*	0.000*	0.005*
		FALL			WINTER			SPRING			SUMMER	
Alteration		high			high			high			severe	
Overall Alteration												severe

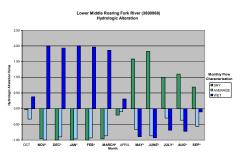
bold* significant at P< .05

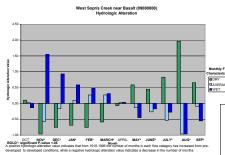
Snowmass Creek Sub-Watershed Hydrologic Alteration

A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months.


* Significant P-value< .05

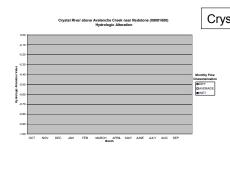
Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Snowmass Creek Sub-Watershed

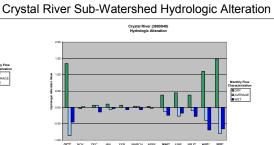

Dito military Creek		c. s.rett										
East Snowmass C	Creek		NODE: 38	301441								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	34.03	27.92	22.21	18.16	15.19	14.92	19.25	74.11	249.82	171.21	83.72	42.47
Developed	32.93	26.70	20.47	16.40	13.46	13.33	18.19	72.99	247.81	168.74	81.53	40.75
Percent	96.75	95.61	92.16	90.33	88.62	89.32	94.50	98.49	99.19	98.56	97.38	95.96
Significance	0.332	0.096	0.004*	0.001*	0.000*	0.000*	0.081	0.709	0.752	0.75	0.609	0.378
		FALL			WINTER			SPRING			SUMMER	
Alteration		moderate			severe			none			none	
Overall Alteration												moderate

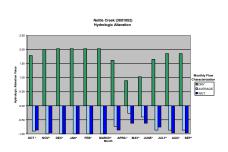

Capitol Creek		NODE: 38	302013									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	13.04	10.70	8.51	6.96	5.82	5.72	7.38	28.39	95.67	65.57	32.06	16.27
Developed	13.04	10.70	8.51	6.96	5.82	5.72	7.38	28.39	95.67	65.57	32.06	16.27
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none

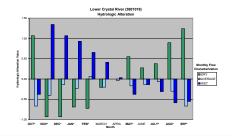
bold* significant at P< .05

Lower Middle Roaring Fork River Sub-Watershed Hydrologic Alteration



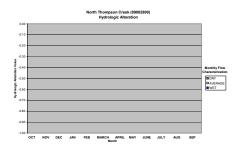



A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months. * Significant P-value< .05

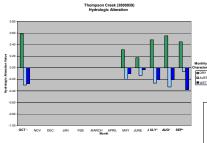

Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Lower Middle Roaring Fork River Sub-Watershed

West Sopris Creek	<u>1</u>	NODE: 38	00880									
Medians O	CT N	VOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	1.56	0.61	0.55	0.55	0.59	0.70	2.60	8.62	15.82	11.19	5.69	2.53
Developed	1.37	0.61	0.55	0.55	0.59	0.70	2.58	4.42	10.29	5.64	2.50	2.09
Percent	87.50	100.00	100.00	100.00	100.00	100.00	99.35	51.23	65.06	50.36	44.00	82.72
Significance	0.121	1	1	1	1	1	0.929	0.000*	0.000*	0.000*	0.000*	0.003*
	I	ALL			WINTER			SPRING			SUMMER	
Alteration	n	one			none			high			severe	
Overall Alteration												high
West Sopris Creek	near Basal	l <u>t</u>	NODE:09	080800								
Medians 0	CT N	VOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	3.01	1.16	1.07	1.06	1.15	1.35	5.02	16.67	30.59	21.63	11.01	4.91
Developed	2.77	1.60	1.40	1.29	1.35	1.48	5.09	11.38	22.85	13.87	6.76	3.88
Percent	92.16	137.68	131.30	122.31	117.19	109.64	101.51	68.24	74.68	64.14	61.37	79.11
Significance	0.569	0.000*	0.000*	0.000*	0.000*	0.003*	0.738	0.002*	0.006*	0.000*	0.000*	0.002*
		ALL			WINTER			SPRING			SUMMER	
Alteration	h	nigh			severe			high			severe	
Overall Alteration												severe
Lower Middle Roar				NODE: 38								
Medians 0	CT N		DEC		FEB	MARCH	APRIL	MAY		JULY	AUG	SEPT
Pre-developed	390.68	237.60	218.84	202.16	191.84	220.40	413.27	1884.99			783.29	
Developed	429.09	390.99	341.75	312.05	306.22	314.65	447.97	1036.79		1050.30	508.35	
Percent	109.83	164.56	156.16	154.35	159.62	142.76	108.40	55.00	47.51	60.76	64.90	87.99
Significance	0.247	0.000*	0.000*	0.000*	0.000*	0.000*	0.376	0.000*	0.000*	0.000*	0.000*	0.023*
	F	ALL			WINTER			SPRING			SUMMER	
Alteration	h	nigh			severe			high	_		severe	-
Overall Alteration												severe

A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months. * Significant P-value< .05


Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Crystal River Sub-Watershed

Crystal River ab	ove Avalanc	che Creek	near Redsto	one		Node: 090	81600					
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	93.12	63.68	48.14	48.29	47.08	59.84	205.68	766.85	1262.97	532.57	177.53	115.36
Developed	93.12	63.68	48.14	48.29	47.08	59.84	205.68	766.85	1262.97	532.57	177.53	115.36
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none

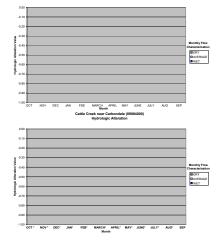

Nettle Creek		NODE: 38	801052									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	1.67	0.50	0.86	0.89	0.82	1.05	1.82	3.92	6.34	5.32	2.86	2.50
Developed	0.33	0.00	0.00	0.00	0.00	0.00	0.12	1.63	3.11	1.59	0.33	0.51
Percent	20.00	0.00	0.00	0.00	0.00	0.00	6.48	41.49	49.07	29.97	11.36	20.54
Significance	0.000*	*0000	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
		FALL			WINTER			SPRING			SUMMER	
Alteration		severe			severe			severe			severe	
Overall Alteration												severe

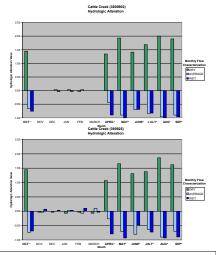
Middle Crystal R	liver	Node: 380	0840									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	123.07	70.05	64.13	63.96	61.33	77.87	236.69	835.00	1371.76	626.70	225.12	161.43
Developed	53.36	70.27	63.49	63.42	60.78	76.69	235.92	732.88	1296.04	512.49	119.87	66.05
Percent	43.36	100.31	99.00	99.15	99.10	98.49	99.68	87.77	94.48	81.77	53.25	40.91
Significance	0.000*	0.983	0.754	0.64	0.643	0.657	0.832	0.014*	0.112	0.025*	0.000*	0.000*
		FALL 0.983 0.754			WINTER			SPRING			SUMMER	
Alteration		moderate			none			moderate			severe	
Overall Alteration												high

Lower Crystal F	River	Node 3801	1018									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	164.8	82.3	85.59	85.33	82.93	105.6	305.7	988.8	1682	746.6	289.3	219.2
Developed	120.1	120.63	105.88	97.98	92.76	111.2	306.5	875.1	1553	621.3	192.6	134.9
Percent	72.89	146.58	123.71	114.82	108.98	105.28	100.26	88.50	92.36	83.22	66.57	61.55
Significance	0.000*	0.000*	0.000*	0.000*	0.000*	0.075	0.817	0.022*	0.135	0.037*	0.000*	0.000*
	FALL				WINTER			SPRING			SUMMER	
Alteration		severe			high			moderate			severe	

Thompson Creek Sub-Watershed Hydrologic Alteration

A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months.


* Significant P-value< .05


Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Thompson Creek Sub-Watershed

North Thompson	Creek		Node: 090	82800								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	2.42	2.08	1.85	1.78	1.66	3.33	22.36	102.78	69.32	7.53	2.99	1.87
Developed	2.42	2.08	1.85	1.78	1.66	3.33	22.36	102.78	69.32	7.53	2.99	1.87
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none

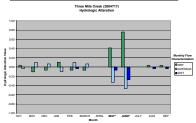
Thompson Creek	<u>.</u>	NODE: 38	300939									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	23.58	8.09	12.39	12.89	11.83	16.55	44.51	146.88	150.48	72.56	39.17	33.15
Developed	19.09	8.09	12.39	12.89	11.83	16.55	44.51	136.31	138.51	61.95	31.97	27.45
Percent	80.93	100.00	100.00	100.00	100.00	100.00	100.00	92.81	92.05	85.37	81.63	82.81
Significance	0.001*	1	1	1	1	1	1	0.368	0.341	0.028*	0.002*	0.000*
		FALL			WINTER			SPRING			SUMMER	
Alteration		moderate			none			none			severe	
Overall Alteration												moderate

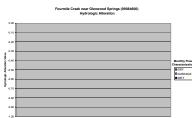
Cattle Creek Sub-Watershed Hydrologic Alteration

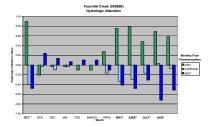
A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months.

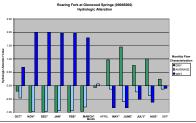
* Significant P-value< .05

 $Comparison \ of \ pre-developed \ and \ developed \ flows \ derived \ from \ Colorado \ River \ Decision \ Support \ System \ Stream \ Simulation \ Models \ Cattle \ Creek \ Sub-Watershed$


Cume Creek But	o-rr ater site	•										
Upper Cattle Cre	eek_		Node: 380	2080								
Medians	OCT !	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	4.63	4.56	3.60	3.64	3.59	4.08	19.35	66.76	62.14	11.75	5.20	4.49
Developed	4.63	4.56	3.60	3.64	3.59	4.08	19.35	66.76	62.14	11.75	5.20	4.49
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration	I	ione			none			none			none	
Overall Alteration												none


Cattle Creek nea	r Carbondale	2	NODE: 09	084000								
Medians	OCT N	ЮV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	4.63	4.56	3.60	3.64	3.59	4.08	19.35	66.76	62.14	11.75	5.20	4.49
Developed	4.63	4.56	3.60	3.64	3.59	4.08	19.35	66.76	62.14	11.75	5.20	4.49
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
	F	FALL			WINTER			SPRING			SUMMER	
Alteration	n	none			none			none			none	
Overall Alteration												none


Middle Cattle Cr	eek_	Node: 380	0902									
Medians	OCT :	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	7.29	5.50	4.85	4.98	4.78	5.47	21.80	73.25	73.26	19.09	9.11	7.94
Developed	3.80	5.50	4.85	4.98	4.78	5.47	7.71	16.94	15.18	6.89	5.87	3.31
Percent	52.12	100.15	100.00	100.00	100.00	100.00	35.35	23.12	20.72	36.09	64.46	41.69
Significance	0.000*	0.901	0.979	1	1	1	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
-		FALL 0.901 0.979			WINTER			SPRING			SUMMER	
Alteration		moderate			none			severe			severe	
Overall Alteration												hiøh


Middle Cattle Cr	<u>eek</u>	Node 3800	925									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	21.05	10.09	11.86	12.31	11.53	14.48	37.38	106.23	126.93	63.22	33.8	29.1
Developed	7.85	10.3	12.03	12.42	11.68	14.32	21.51	31.88	49.22	35.18	14.8	12.38
Percent	37.31	102.08	101.44	100.93	101.25	98.93	57.55	30.01	38.78	55.65	43.79	42.54
Significance	0.000*	0.655	0.67	0.696	0.706	0.854	0.000*	0.000*	0.000*	0.000*	0.000*	0.000*
		FALL			WINTER			SPRING			SUMMER	
Alteration		moderate			none			severe			severe	
Overall Alteration												high

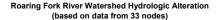
Lower Roaring Fork River Sub-Watershed Hydrologic Alteration

A positive hydrologic alteration value indicates that from 1910-1996 the number of months in each flow category has increased from pre-developed to developed conditions, while a negative hydrologic alteration value indicates a decrease in the number of months.

* Significant P-value< .05

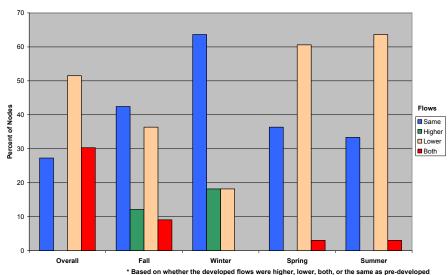
Comparison of pre-developed and developed flows derived from Colorado River Decision Support System Stream Simulation Models Lower Roaring Fork River Sub-Watershed

Dones Rouning		5110 // title										
Upper Three Mil	le Creek		Node: 380	4717								
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	0.96	0.28	0.49	0.50	0.47	0.60	1.03	2.24	3.62	3.04	1.63	1.43
Developed	0.96	0.28	0.49	0.50	0.47	0.60	1.03	1.69	2.40	3.03	1.63	1.43
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	75.64	66.36	99.73	100.00	100.00
Significance	1	1	1	1	1	1	1	0.031*	0.000*	0.941	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			high			none	
Overall Alteration												moderate

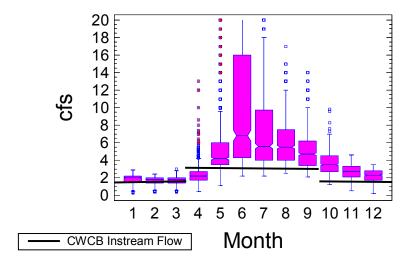

Four Mile Creek near Glenwood Springs					NODE: 09084600							
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	0.72	0.75	0.64	0.60	0.61	1.00	12.05	61.47	23.13	1.98	0.99	0.54
Developed	0.72	0.75	0.64	0.60	0.61	1.00	12.05	61.47	23.13	1.98	0.99	0.54
Percent	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00
Significance	1	1	1	1	1	1	1	1	1	1	1	1
		FALL			WINTER			SPRING			SUMMER	
Alteration		none			none			none			none	
Overall Alteration												none


Four Mile Creek		Node: 380	0688									
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	7.58	2.84	4.015	4.14	3.9	5.43	19.62	77.85	49.8	23.15	12.41	10.65
Developed	5.34	3.06	4.155	4.23	3.98	5.47	17.14	56.23	31.96	19.91	9.77	8.53
Percent	70.49	107.69	103.44	102.16	102.08	100.75	87.37	72.23	64.17	86.02	78.77	80.19
Significance	0.000*	0.443	0.573	0.552	0.54	0.73	0.076	0.000*	0.000*	0.022*	0.000*	0.000*
		FALL			WINTER			SPRING			SUMMER	
Alteration		moderate			none			high			severe	
Overall Alteration												high

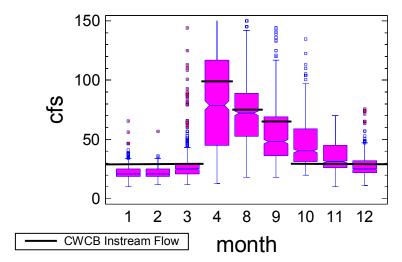
Roaring Fork at	Glenwood S	Springs		Node 0908	5000							
Medians	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT
Pre-developed	613.90	346.44	328.49	317.76	306.66	366.17	805.63	3099.97	5884.65	2635.99	1150.24	796.09
Developed	721.08	641.13	538.13	482.06	461.20	490.08	838.53	2042.66	3807.09	1884.14	836.63	730.90
Percent	117.46	185.06	163.82	151.71	150.40	133.84	104.08	65.89	64.70	71.48	72.74	91.81
Significance	0.009*	0.000*	0.000*	0.000*	0.000*	0.000*	0.668	0.000*	0.000*	0.000*	*0000	0.178
		FALL			WINTER			SPRING			SUMMER	
Alteration		severe			severe			high			high	
Overall Alteration												severe


Appendix L: Histograms of Hydrologic Alteration Results

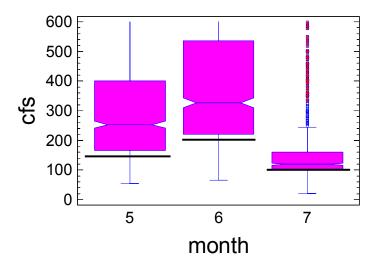
Percent of modeled nodes in each class and percent that had higher, lower, both, or the same flows comparing developed flows to pre-developed flows

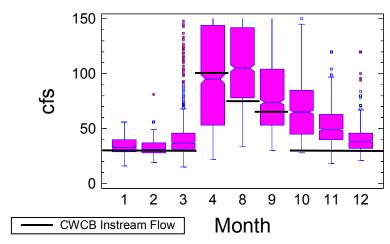


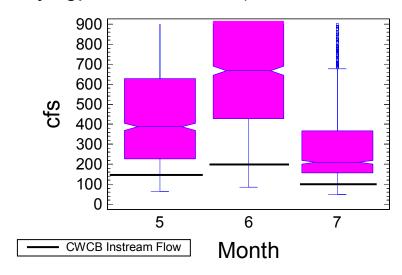
Roaring Fork River Watershed Hydrologic Alteration (based on data from 33 nodes)

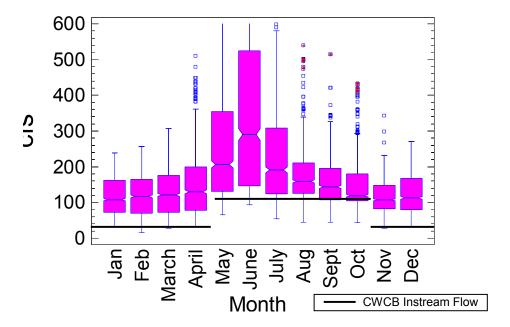


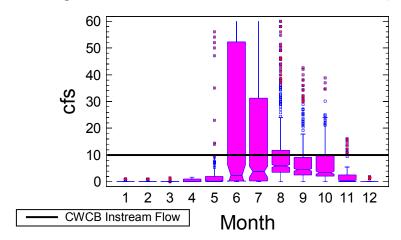
Appendix L: Box and Whisker Plots of Gage Data

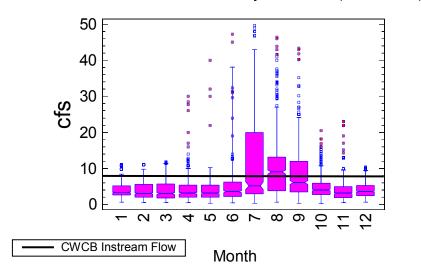

Chapman Gulch Near Nast (1972-2004)

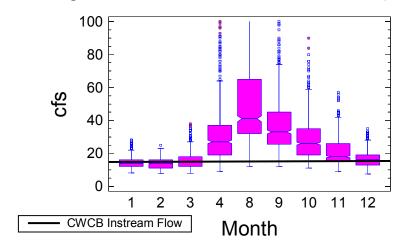

Fryingpan River near Thomasville (1975-2005)

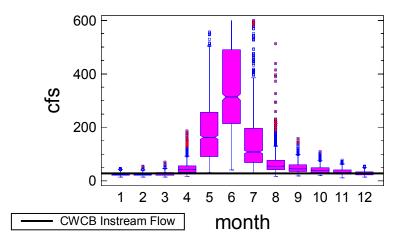

Fryingpan River near Thomasville (1975-2005)

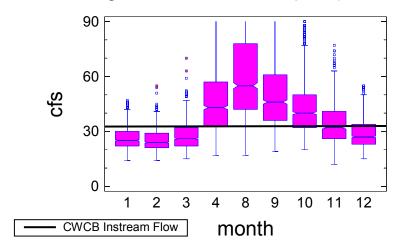

Fryingpan River at Meredith (1910-1915, 1966-2004)

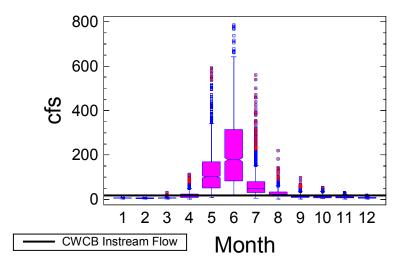

Fryingpan at Meredith (1910-1915, 1966-2004)

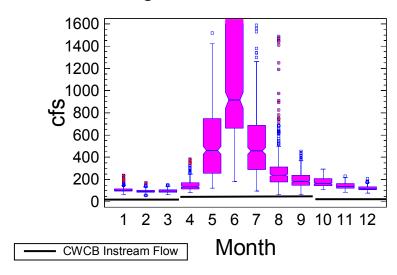

Fryingpan River Near Ruedi (1964-2005)

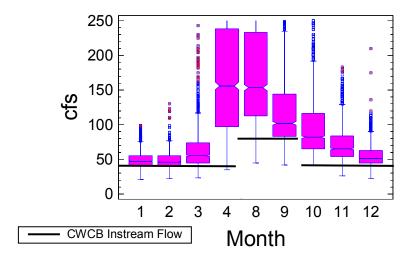

Roaring Fork River Below Lost Man Creek (1980-2005

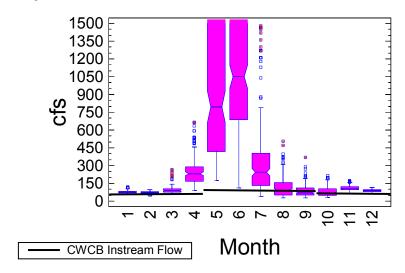

Lincoln Creek Below Grizzly Reservoir (1980-2005)

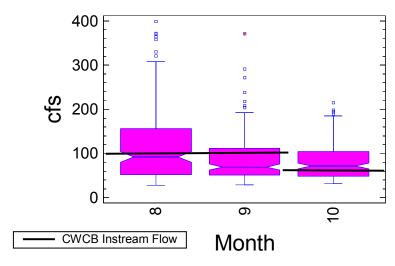

Roaring Fork River above Difficult Creek (1979-2005)


Roaring Fork River near Aspen (1964-2005)


Roaring Fork River near Aspen (1964-2005)


Hunter Creek near Aspen (1950-2005)


Roaring Fork below Maroon Creek


Crystal River above Avalanche Creek (1955-2005

Crystal River Below Carbondale, C0 (2000-2005)

Crystal River Below Carbondale, C0 (2000-2005)

Appendix N: Excerpt from Fryingpan-Arkansas Project Operating Principles referencing the Twin Lakes Exchange (March 15, 1961)

The construction and operation of the project involve the diversion of water from the headwaters of the Fryingpan River and other tributaries of the Roaring Fork River to the Arkansas River Basin. The project contemplates—

- (a) The maximum conservation and use of water;
- (b) The protection of western Colorado water uses, both existing and potential, in accordance with the declared policy of the State of Colorado; and
- (c) The preservation of recreational values.

In order to accomplish such purposes, the project shall be operated by the United States in compliance with the Federal reclamation laws, the laws of the State of Colorado relating to the appropriation, use, or distribution of water, and the following operating principles:

. . .

11. An appropriate written contract may be made whereby Twin Lakes Reservoir and Canal Company shall refrain from diverting water whenever the natural flow of the Roaring Fork River and its tributaries shall be only sufficient to maintain a flow equal to or less than that required to maintain the recommended average flows in the Roaring Fork River immediately above its confluence with Difficult Creek in a quantity proportionate to the respective natural flow of the Roaring Fork River. The recommended average flows above mentioned are flows in quantities equal to those recommended as a minimum immediately above its confluence with Difficult Creek according to the following schedule submitted by the United States Fish and Wildlife Service and the Colorado Game and Fish Commission:

Month	Average	Acre-feet	Month	Average	Acre-feet	
	Second-feet	(thousands)		Second-feet	(thousands)	
October	44	2.7	May	100	6.2	
November	35	2.1	June	120	7.1	
December	29	1.8	July	100	6.2	
February	25	1.4	September	44	<u>2.6</u>	
March	24	1.5	_			
April	64	3.8				

Total acre feet: 40.9

In maintaining the above averages, at no time shall the flow be reduced below 15 cfs during the months of August to April, inclusive, or below 60 cfs during the months of May to July, inclusive, providing the natural flow during said period is not less than these amounts. The obligation to supply the minimum streamflow as set forth in the above table on the Roaring Fork River shall, to the extent of 3,000 acre-feet annually, be a project obligation to be supplied from any waters diverted from the south tributaries of Hunter Creek, Lime Creek, Last Chance Creek, or any of them.

The Twin Lakes Reservoir and Canal Company shall not be required to refrain from diverting water under its existing decrees from the Roaring Fork River except to the extent that a like quantity of replacement water is furnished to said company without charge therefore through and by means of project diversions and storage.

If by reason of storage capacity in the Ruedi Reservoir, or any reservoir constructed in addition thereto, the Twin Lakes Reservoir and Canal Company derives additional water or other benefits or advantages it would not have realized had this project not been constructed, then nothing herein contained shall prevent the project from making appropriate charges for such water or

other benefits or advantages. All revenues derived from the use of water stored in Ashcroft Reservoir shall be used to assist in the repayment of the construction, operation, and maintenance costs of that reservoir, or any reservoir constructed in lieu thereof, as may be determined by the Secretary of the Interior.

Appendix O: Roaring Fork and Crystal Rivers Strategic Plan

Organization of overall project

Colorado Water Trust (lead)

Roaring Fork Conservancy

The Nature Conservancy (Colorado Headwaters Project)

Colorado Water Conservation Board

Mission Statement

The Upper Roaring Fork River and the Crystal River contain important biodiversity (fish and wildlife resources), some of which are globally rare or endangered. Historic water management practices in these reaches have adversely impacted fish and wildlife populations and the riparian habitats that they need to survive and reproduce. Creative, voluntary approaches to rebalance water use will be used such that stream flows will be able to sustain important fish and wildlife resources. The approaches include market-based transactions and water rights management strategies that will establish ecologically sustainable flow levels and restore degraded riparian habitat where needed. The Partnership will work with willing landowners and water rights holders in the Upper Roaring Fork and Crystal Rivers as well as local, state, and federal agencies to accomplish its goals.

Immediate goals

- 1. Develop public awareness of streamflow issues.
- 2. Complete ditch study of Town of Carbondale.
- 3. Obtain donation of one water right for Roaring Fork River instream flows from a local government.
- 4. Hold initial meeting(s) with private water rights interests on Roaring Fork River.
- 5. Obtain donation of one water right for Crystal River instream flow support from one local government.
- 6. Begin private, confidential fundraising to purchase additional water rights (do not want to dampen donations, heat up market).
- 7. Draft legal brief on transfer of water rights lost to stream as a result of Trans-mountain diversions.

Near-term goals

- 1. Elevate public awareness of streamflow issues.
- 2. Reconnaissance-level investigation of piped irrigation system for Town of Carbondale.
- 3. Obtain donation of additional water rights for Crystal River instream flow from another local government.
- 4. Hold initial meeting(s) with private water rights interests on Crystal River.
- 5. Obtain additional donations of water rights for Roaring Fork instream flows from local governments.
- 6. Obtain additional water rights for Roaring Fork instream flows from private parties through donation and/or purchase.
- 7. Draft legal brief on right of diversion as one of the bundle of sticks that comprise a water right.

Mid-term goals

- 1. Secure public support for streamflow issues.
- 2. Obtain additional water rights for Roaring Fork instream flows from private parties through donation and/or purchase.
- 3. Obtain additional water rights for Crystal instream flows from private parties through donation and/or purchase.
- 4. Define instream flow and habitat needs for Roaring Fork River.
- 5. Define instream flow and habitat needs for Crystal River.
- 6. Exchange Roaring Fork water rights up the Crystal River.
- 7. Donate initial package of instream flow rights/interests for basin to CWCB ISF Program.
- 8. Begin adjudication of initial donation to CWCB.

Long-term goals

- 1. Maintain public support for streamflow issues.
- 2. Complete adjudication of initial donation to CWCB ISF Program.
- 3. Meet flow goals for Roaring Fork River with permanent acquisitions.
- 4. Meet flow goals for Crystal River with permanent acquisitions.
- 5. Donate second package of instream flow rights/interests for basin to CWCB.
- 6. Adjudicate second package of donations to CWCB.

Appendix P: National Hydrography Data (NHD) Application

How local, state and federal organizations store and utilize their linear referenced data varies not only between the organizations themselves but also between the departments within the organizations. Because of this variance, there is a need for flexible tools to create, display, query, analyze, and distribute linear referenced data. NHD data and tools (http://nhd.usgs.gov/) can provide the foundation for the Project. A tool developed by the Forest Service translates linear data to events. The source data for NHDinGeo (geodatabase version of NHD) is the 1:24,000-scale USGS topographic maps. The blue lines on these maps are scanned to produce Digital Line Graph (DLG) hydrography. At this point the data are not suitable for linear referencing and hydrologic navigation (determining upstream and downstream linkages) because they contain waterbodies and wide streams are portrayed with a right and left bank (double-banked). These two types of features make it very difficult to determine connectivity. The NHDinGeo undergoes a process called centerlining to make a direct connection through waterbodies and double-banked streams.

The NHD provides a comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells. Within the NHD, surface water features are combined to form "reaches," which provide the framework for linking water-related data to the NHD surface water drainage network. These linkages enable the analysis and display of these water-related data and any associated information about them in upstream and downstream order. These data are developed nationally with the intention of identifying a local steward to verify and update the hydrology. We are working with the River District and USGS to accomplish this and eagerly anticipated the completion of the NHD editing tool (November, 2005). To aid this process, we obtained stream layers from the four counties (Garfield, Gunnison, Eagle, and Pitkin counties) in our watershed as well as USFS data. These will be compared to the NHD layer to identify and correct potential errors or omissions. All of Pitkin County and parts of Eagle County's stream layers were developed using aerial photography which may represent different positions of the channel especially in meandering and braided systems. The other counties were developed using 1:24,000 USGS DLG hydrography data, which is the basis for the NHD. The USFS hydrology network contains all "blue line" streams from topographic maps and channels determined from following contour crenulations, most likely ephemeral channels. Our editing objective is to ensure that all perennial streams, trans-mountain diversions, reservoirs and major ditches are represented, connected, and flow direction is correct. We will retain intermittent channels that are represented in NHD and will not add ephemeral channels or move the channel to reflect the aerial photographs. Though this process we can correct obvious errors and flag areas of concern. Initially, CDWR, counties, and USFS will be contacted to determine what is correct in these areas. A few cases may require a site visit to determine what is happening. This may be the case in trying to determine if a ditch flows over a stream or is connected to a stream. All edits will be made to the NHDinGeo personal geodatabase and returned to the USGS to redo the hydrologic connectivity and incorporate into the national database. A workshop was held in November, 2005 with USGS to outline this process and make sure that the changes can be made in a timely manner.